Computer-Aided Design of Ion Receptors

Benjamin P. Hay, April 17, 2006, Idaho National Laboratory

DOE Hanford Site

1942 - 1987 mission:

Plutonium production

1987 to date mission:

Clean-up

- decommission facilities
- decontamination
- stabilize nuclear waste
- environmental restoration

Motivation

50 years of weapons production:

- Uranium Mining, Milling, and Refinement
- Isotope Separation (Enrichment)
- Fuel and Target Fabrication
- Reactor Operations
- Chemical Separations
- Weapons Component Fabrication
- Weapons Operations
- Research, Development, and Testing

400,000 m³ high-level nuclear waste 220,000 m³ TRU waste 3.3 million m³ low-level nuclear waste 1.4 billion m³ environmental contamination

Bulk of radioactivity from metals:

Co-60, Sr-90, Y-90, Tc-99, Sm-131, Cs-137, Ba-137, Eu-152, Eu-154, Eu-155, Ra-226, Th-230, U-233, U-235, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Am-241, Cm-244

lonophores play a key role in separations and analysis

Computer-Aided Host Design?

Architecture - scaffolds used to connect sets of binding sites

Structure can have a large effect on binding affinity:

and significant impacts on selectivity:

Structural effects are often difficult to predict

How do we approach this problem?

free form

binding form

bound form

Electronic structure calculations

Electronic structure calculations

Force field calculations are much, much quicker

MM3 calculations take 5 seconds/structure on a laptop computer

Downside - MM models require parameterization

High-level electronic structure calculations on simple analogs

ether donors

arene donors

Crystal structure data

Extending MM models to treat metal complexes

What can we learn by examining structures?

Binding site geometry in crowns favors large metals

Size-match is not sufficient for complementarity

Size-match is not sufficient for complementarity

12-crown-4 versus 14-crown-4

Host strain energy

Host strain energy

Host strain energy

Binding affinity vs. host strain

Actinide sequestering agent design

Selective removal of Pu and U from spent fuel is done via solvent extraction:

Used at Hanford from 1956 through 1987

Currently used for reprocessing power reactor fuel in France, UK, Japan, and Russia.

Agents that also remove Am(III) and Cm(III):

TRUEX agent (ANL/Eichrom)

DIAMEX agent (Numatec)

A closer look at the malonamide architecture

Improved architecture?

Improved architecture?

$$\Delta U_{tot} = 0.0 \text{ kcal/mol}$$

 $\Delta U_{tot} = 0.1 \text{ kcal/mol}$

Improved architecture?

 $\Delta U_{tot} = 0.0 \text{ kcal/mol}$

 $\Delta U_{tot} = 0.1 \text{ kcal/mol}$

Synthesis yields only the *cis* form

X-ray structure of $[Eu(L)_2(NO_3)_3]$

Proof in the pudding . . .

Extraction into t-butylbenzene from aqueous solution containing 1 M NaNO₃, 1.5 mM HNO₃, 0.1 mM Eu(NO₃)₃, and 1- μ L of ¹⁵⁵Eu tracer solution.

Proof in the pudding . . .

Extraction into t-butylbenzene from aqueous solution containing 1 M NaNO₃, 1.5 mM HNO₃, 0.1 mM Eu(NO₃)₃, and 1- μ L of ¹⁵⁵Eu tracer solution.

10 million times more effective

Lumetta, G. J.; Rapko, B. M.; Hay, B. P.; Gilbertson, R. D.; Weakly, T. J. R.; Hutchison, J. E. J. Am. Chem. Soc. 2002, 124, 5644.

Structural design criteria

Computer-Aided Host Design

Structure-Based Drug Design

Known host structure

- steric constraints
- H-bond regions
- hydrophobic regions

Step 1: Build candidate guests

- position functional groups
- •link with spacer fragments

Step 2: Score the candidates

- •number of H-bonds
- •hydrophobic contact area
- entropic factors
- •conformational strain energy

Structure-based host design?

ether binding sites

Li-O distance - 2.1 Å

6-coordinate Li⁺ complex

Step 1: building

Step 2: scoring

geometry evaluation

strain analysis

conformational analysis

QM analysis

HostDesigner Software

Objectives:

Build structures by connecting host fragments with linking fragments

- examine all possible connectivities
- examine all conformations for each connectivity

Score structures with respect to how well they complement the guest.

Do it quickly.

Building algorithm - combine three fragments

(1) Define two host fragments

(2) Choose a potential link

(3) Bond 1st fragment to link

(4) Set dihedral angle on bond

(5) Bond 2nd fragment to link

(6) Set dihedral angle on bond

Scoring by geometry

Linking fragment database

C_nH_m for n = 0 - 6 (excluding alkynes, 3-membered rings, and 4-membered rings)

Dimethylated 5– and 6–membered rings

Selected fused-rings

total: 11,297 linking structures

Example run

Input:

Output: 2,093,217 host structures in 20 sec (MacOSX, 2 GHz)

105,000 structures/sec!!!

Validation

Are the structures generated by HostDesigner accurate?

Validation

Are the structures generated by HostDesigner accurate?

Do the structures complement the guest?

How did we do?

Are the structures minima?

Hay, B. P.; Firman, T. J. Inorg. Chem. 2002, 41, 5502

How did we do?

Are the structures minima?

Are the structures complementary?

host	rmsd (Å)	ΔU (kcal/mol)
1	0.12	0.23
2	0.11	0.21
3	0.09	0.10
4	0.08	0.10
5	0.10	0.08
6	0.11	0.14

Improvements to HostDesigner

(1) Application to any guest

(2) Drive input geometries

- (3) Screen out undesirable linkages (chiral, prochiral, linkage isomers)
- (4) Estimate conformational energy using a group additivity approach
- (5) Optimize code to increase speed

Automated three-stage scoring process

millions of structures

ranked by geometry and estimated degree of preorganization

minutes

top 5000 hits

molecular mechanics analysis ranked by strain energy (ΔU_2)

hours

top 500 hits

conformational analysis of hosts ranked by total strain energy ($\Delta U_1 + \Delta U_2$)

days

best hits

First application to design of metal receptors

Crown ether building block poorly organized for metal ion binding

Organized building blocks should yield more effective macrocycles

Some of the top hits:

Conventional crown

RHF/6-31G* binding energies $\Delta E_{Na} = -91.1 \text{ kcal/mol}$

Designer crown

 $\Delta E_{Na} = -94.5 \text{ kcal/mol}$

Hay, B. P.; Oliferenko, A. A.; Uddin, J.; Zhang, C.; Firman, T. K. *J. Am. Chem. Soc.* **2005**, *127*, 17043.

First application to the design of anionophores

- no linkage isomers
- drive N-C rotation, ± 90°
- drive H - O distance, ± 0.1 Å
- drive O - O rotation, ± 30°

First application to the design of anionophores

Bryantsev, V. S.; Hay, B. P. J. Am. Chem. Soc. 2006, 128, 2035.

1,3-cis-cyclohexane (0.78 Å)

1,3-benzene (0.84 Å)

(MacOSX, 2 GHz)

Assembling larger host molecules - in progress

Approach

- (1) Input fragment must have symmetry
- (2) Move and rotate amine on C_3 axis
- (3) Find link that overlays bond vectors
- (4) Add links to symmetric attachment points
- (5) Check for inter-link collisions

Designing supramolecular assemblies - in progress

Approach

Summary

A structure-based molecular design approach for the discovery of ion receptors has been developed and automated

Pacific Northwest National Laboratory

Operated by Battelle for the U.S. Department of Energy

Structure-function research, scoring methods, and applications

PNNL

Dave Dixon (-> UA)

Dave Feller

Gregg Lumetta

Brian Rapko

Jorge Garza (VS)

Rubi Vargas (PD)

Jamal Uddin (PD)

Cungen Zhang (PD)

Slava Bryantsev (PD)

Alex Oliferenko (PD)

Ken Raymond

UC- Berkeley

U of New Mexico

Bob Paine

U of Oregon

James Hutchison Darren Johnson

ORNL

Bruce Moyer

EMSL - supercomputer

Sponsor

Environmental Management Science Program, Office of Science, Project Nos. 54679, 55087, 64974, 73759, 82773

HostDesigner software

PNNL

Timothy Firman (PD)
Bert de Jong
John Nicholas

Serena Software Kevin Gilbert

Sponsors

LDRD program, PNNL and the Office of Chemical Sciences, Geosciences, and Biosciences, Basic Energy Sciences, Office of Science